Brain tumor pathological area delimitation through Non-negative Matrix Factorization

Sandra Ortega-Martorell*, Paulo J.G. Lisboa, Alfredo Vellido, Rui V. Simões, Margarida Julià-Sapé, Carles Arús

*Autor corresponent d’aquest treball

Producció científica: Altres contribucions

Resum

Pattern Recognition and Data Mining can provide invaluable insights in the field of neuro oncology. This is because the clinical analysis of brain tumors requires the use of non-invasive methods that generate complex data in electronic format. Magnetic resonance, in the modalities of imaging and spectroscopy, is one of these methods that has been widely applied to this purpose. The heterogeneity of the tissue in the brain volumes analyzed by magnetic resonance remains a challenge in terms of pathological area delimitation. In this brief paper, we show that the Convex-Nonnegative Matrix Factorization technique can be used to extract MRS signal sources that are extremely tissue type-specific and that can be used to delimit these pathological areas with great accuracy.

Idioma originalAnglès nord-americà
Nombre de pàgines6
DOIs
Estat de la publicacióPublicada - 2011

Sèrie de publicacions

NomProceedings - IEEE International Conference on Data Mining, ICDM
ISSN (imprès)1550-4786

Fingerprint

Navegar pels temes de recerca de 'Brain tumor pathological area delimitation through Non-negative Matrix Factorization'. Junts formen un fingerprint únic.

Com citar-ho