Biodistribution of liposome-encapsulated bacteriophages and their transcytosis during oral phage therapy

Jennifer Otero, Alba García-Rodríguez, Mary Cano-Sarabia, Daniel Maspoch, Ricard Marcos, Pilar Cortés, Montserrat Llagostera

Producció científica: Contribució a revistaArticleRecerca

51 Cites (Scopus)

Resum

Copyright © 2019 Otero, García-Rodríguez, Cano-Sarabia, Maspoch, Marcos, Cortés and Llagostera. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. This study sheds light on the biodistribution of orally administered, liposome-encapsulated bacteriophages, and their transcytosis through intestinal cell layers. Fluorochrome-labeled bacteriophages were used together with a non-invasive imaging methodology in the in vivo visualization of bacteriophages in the stomach and intestinal tract of mice. In those studies, phage encapsulation resulted in a significant increase of the labeled phages in the mouse stomach, even 6 h after their oral administration, and without a decrease in their concentration. By contrast, the visualization of encapsulated and non-encapsulated phages in the intestine were similar. Our in vivo observations were corroborated by culture methods and ex vivo experiments, which also showed that the percentage of encapsulated phages in the stomach remained constant (50%) compared to the amount of initially administered product. However, the use of conventional microbiological methods, which employ bile salts to break down liposomes, prevented the detection of encapsulated phages in the intestine. The ex vivo data showed a higher concentration of non-encapsulated than encapsulated phages in liver, kidney, and even muscle up to 6 h post-administration. Encapsulated bacteriophages were able to reach the liver, spleen, and muscle, with values of 38% ± 6.3%, 68% ± 8.6%, and 47% ± 7.4%, respectively, which persisted over the course of the experiment. Confocal laser scanning microscopy of an in vitro co-culture of human Caco-2/HT29/Raji-B cells revealed that Vybrant-Dil-stained liposomes containing labeled bacteriophages were preferably embedded in cell membranes. No transcytosis of encapsulated phages was detected in this in vitro model, whereas SYBR-gold-labeled non-encapsulated bacteriophages were able to cross the membrane. Our work demonstrates the prolonged persistence of liposome-encapsulated phages in the stomach and their adherence to the intestinal membrane. These observations could explain the greater long-term efficacy of phage therapy using liposome-encapsulated phages.
Idioma originalAnglès
Número d’article689
Pàgines (de-a)689
Nombre de pàgines12
RevistaFrontiers in Microbiology
Volum10
NúmeroAPR
DOIs
Estat de la publicacióPublicada - 4 d’abr. 2019

Fingerprint

Navegar pels temes de recerca de 'Biodistribution of liposome-encapsulated bacteriophages and their transcytosis during oral phage therapy'. Junts formen un fingerprint únic.

Com citar-ho