Bifurcation of local critical periods in the generalized Loud's system

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

7 Cites (Scopus)

Resum

We study the bifurcation of local critical periods in the differential system (x˙ = −y + Bxn−1y,y˙ = x + Dxn + F xn−2y2, where B, D, F ∈ R and n > 3 is a fixed natural number. Here by "local" we mean in a neighbourhood of the center at the origin. For n even we show that at most two local critical periods bifurcate from a weak center of finite order or from the linear isochrone, and at most one local critical period from a nonlinear isochrone. For n odd we prove that at most one local critical period bifurcates from the weak centers of finite or infinite order. In addition, we show that the upper bound is sharp in all the cases. For n = 2 this was proved by Chicone and Jacobs in [Bifurcation of critical periods for plane vector fields, Trans. Amer. Math. Soc. 312 (1989) 433-486] and our proof strongly relies on their general results about the issue.
Idioma originalAnglès
Pàgines (de-a)6803-6813
Nombre de pàgines11
RevistaApplied Mathematics and Computation
Volum218
DOIs
Estat de la publicacióEn premsa - 2012

Fingerprint

Navegar pels temes de recerca de 'Bifurcation of local critical periods in the generalized Loud's system'. Junts formen un fingerprint únic.

Com citar-ho