Bifurcation of limit cycles from a centre in 4 in resonance 1:N

Claudio A. Buzzi, Jaume Llibre, João C. Medrado, Joan Torregrosa

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

12 Cites (Scopus)

Resum

For every positive integer N 2 we consider the linear differential centre [image omitted] in 4 with eigenvalues i and Ni. We perturb this linear centre inside the class of all polynomial differential systems of the form linear plus a homogeneous nonlinearity of degree N, i.e. [image omitted] where every component of F(x) is a linear polynomial plus a homogeneous polynomial of degree N. Then if the displacement function of order of the perturbed system is not identically zero, we study the maximal number of limit cycles that can bifurcate from the periodic orbits of the linear differential centre.
Idioma originalAnglès
Pàgines (de-a)123-137
RevistaDynamical Systems
Volum24
Número1
DOIs
Estat de la publicacióPublicada - 1 de març 2009

Fingerprint

Navegar pels temes de recerca de 'Bifurcation of limit cycles from a centre in 4 in resonance 1:N'. Junts formen un fingerprint únic.

Com citar-ho