Bifurcation of limit cycles from a 4-dimensional center in R{double-struck} m in resonance 1:N

Luis Barreira, Jaume Llibre, Claudia Valls

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

20 Cites (Scopus)

Resum

For every positive integer N≥. 2 we consider the linear differential center x ̇=Ax in R{double-struck} m with eigenvalues ±i, ± Ni and 0 with multiplicity m-4. We perturb this linear center inside the class of all polynomial differential systems of the form linear plus a homogeneous nonlinearity of degree N, i.e. x ̇=Ax+εF(x) where every component of F(x) is a linear polynomial plus a homogeneous polynomial of degree N. When the displacement function of order ε of the perturbed system is not identically zero, we study the maximal number of limit cycles that can bifurcate from the periodic orbits of the linear differential center. In particular, we give explicit upper bounds for the number of limit cycles. © 2011 Elsevier Inc.
Idioma originalAnglès
Pàgines (de-a)754-768
RevistaJournal of Mathematical Analysis and Applications
Volum389
Número2
DOIs
Estat de la publicacióPublicada - 15 de maig 2012

Fingerprint

Navegar pels temes de recerca de 'Bifurcation of limit cycles from a 4-dimensional center in R{double-struck} m in resonance 1:N'. Junts formen un fingerprint únic.

Com citar-ho