Biembeddings of small order hamming STS(n) and APN monomial power permutations

Josep Rifa, Faina I. Solov'Eva, Merce Villanueva

Producció científica: Capítol de llibreCapítolRecercaAvaluat per experts

Resum

The classification, up to isomorphism, of all self-embedding monomial power permutations of Hamming Steiner triple systems of order n = 2m - 1 for small m (m ≤ 22), is given. For m J{5, 7,11,13,17,19}, all given self-embeddings in closed surfaces are new. Moreover, they are cyclic for all m. For any non prime m, the nonexistence of such self-embeddings in a closed surface is proven. The rotation line spectrum for self-embeddings of Hamming Steiner triple systems in pseudosurfaces with pinch points as an invariant to distinguish APN permutations or, in general, to classify permutations, is proposed. This classification for APN monomial power permutations coincides with the CCZ-equivalence, at least up to m ≤ 17.

Idioma originalAnglès
Títol de la publicació2013 IEEE International Symposium on Information Theory, ISIT 2013
Pàgines869-873
Nombre de pàgines5
DOIs
Estat de la publicacióPublicada - 2013

Sèrie de publicacions

NomIEEE International Symposium on Information Theory - Proceedings
ISSN (imprès)2157-8095

Fingerprint

Navegar pels temes de recerca de 'Biembeddings of small order hamming STS(n) and APN monomial power permutations'. Junts formen un fingerprint únic.

Com citar-ho