Resum
Let k be a fixed algebraic closure of and k(t)ac a fixed algebraic closure of k(t). Let Sk[t]\ {0} be a multiplicative set. Let A=S-1(k[t]) and [image omitted] be the integral closure of A in k(t)ac. We use elliptic curves to develop a necessary condition on S for [image omitted] to be a Bezout domain. We give some examples of S which fail to satisfy this condition. As a consequence, we eliminate some candidates for a good Rumely domain of characteristic 0 with algebraic subring k.
Idioma original | Anglès |
---|---|
Pàgines (de-a) | 4492-4499 |
Nombre de pàgines | 8 |
Revista | Communications in Algebra |
Volum | 36 |
Número | 12 |
DOIs | |
Estat de la publicació | Publicada - de des. 2008 |