Between classical and ideal: Enhancing wildland fire prediction using cluster computing

Baker Abdalhaq, Ana Cortés, Tomàs Margalef, Germán Bianchini, Emilio Luque

Producció científica: Contribució a una revistaArticleRecercaAvaluat per experts

7 Cites (Scopus)

Resum

One of the challenges still open to wildland fire simulators is the capacity of working under real-time constrains with the aim of providing fire spread predictions that could be useful in fire mitigation interventions. We propose going one step beyond the classical wildland fire prediction by linking evolutionary optimization strategies to the traditional scheme with the aim of emulating an "ideal" fire propagation model as much as possible. In order to accelerate the fire prediction, this enhanced prediction scheme has been developed in a fashion on a Linux cluster using MPI. Furthermore, a sensitivity analysis has been carried out to determine the input parameters that we can fix to their typical values in order to reduce the search-space involved in the optimization process and, therefore, accelerates the whole prediction strategy. © Springer Science + Business Media, LLC 2006.
Idioma originalEnglish
Pàgines (de-a)329-343
RevistaCluster Computing
Volum9
DOIs
Estat de la publicacióPublicada - 1 de jul. 2006

Fingerprint

Navegar pels temes de recerca de 'Between classical and ideal: Enhancing wildland fire prediction using cluster computing'. Junts formen un fingerprint únic.

Com citar-ho