Automatic brain caudate nuclei segmentation and classification in diagnostic of Attention-Deficit/Hyperactivity Disorder

Laura Igual, Joan Carles Soliva, Sergio Escalera, Roger Gimeno, Oscar Vilarroya, Petia Radeva

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

28 Cites (Scopus)

Resum

We present a fully automatic diagnostic imaging test for Attention-Deficit/Hyperactivity Disorder diagnosis assistance based on previously found evidences of caudate nucleus volumetric abnormalities. The proposed method consists of different steps: a new automatic method for external and internal segmentation of caudate based on Machine Learning methodologies; the definition of a set of new volume relation features, 3D Dissociated Dipoles, used for caudate representation and classification. We separately validate the contributions using real data from a pediatric population and show precise internal caudate segmentation and discrimination power of the diagnostic test, showing significant performance improvements in comparison to other state-of-the-art methods. © 2012 Elsevier Ltd.
Idioma originalAnglès
Pàgines (de-a)591-600
RevistaComputerized Medical Imaging and Graphics
Volum36
Número8
DOIs
Estat de la publicacióPublicada - 1 de des. 2012

Fingerprint

Navegar pels temes de recerca de 'Automatic brain caudate nuclei segmentation and classification in diagnostic of Attention-Deficit/Hyperactivity Disorder'. Junts formen un fingerprint únic.

Com citar-ho