Automated Quality Control for Proton Magnetic Resonance Spectroscopy Data Using Convex Non-negative Matrix Factorization.

Victor Mocioiu, Sreenath P. Kyathanahally, Carles Arús, Alfredo Vellido, Margarida Julià-Sapé*

*Autor corresponent d’aquest treball

Producció científica: Capítol de llibreCapítolRecercaAvaluat per experts

5 Cites (Scopus)

Resum

Proton Magnetic Resonance Spectroscopy (1H MRS) has proven its diagnostic potential in a variety of conditions. However, MRS is not yet widely used in clinical routine because of the lack of experts on its diagnostic interpretation. Although data-based decision support systems exist to aid diagnosis, they often take for granted that the data is of good quality, which is not always the case in a real application context. Systems based on models built with bad quality data are likely to underperform in their decision support tasks. In this study, we propose a system to filter out such bad quality data. It is based on convex Non-Negative Matrix Factorization models, used as a dimensionality reduction procedure, and on the use of several classifiers to discriminate between good and bad quality data.

Idioma originalAnglès
Títol de la publicacióBioinformatics and Biomedical Engineering. IWBBIO 2016. Lecture Notes in Computer Science()
Pàgines 719–727
Nombre de pàgines9
Volum9656
ISBN (electrònic)978-3-319-31744-1
DOIs
Estat de la publicacióPublicada - de març 2016

Sèrie de publicacions

NomLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volum9656
ISSN (imprès)0302-9743
ISSN (electrònic)1611-3349

Fingerprint

Navegar pels temes de recerca de 'Automated Quality Control for Proton Magnetic Resonance Spectroscopy Data Using Convex Non-negative Matrix Factorization.'. Junts formen un fingerprint únic.

Com citar-ho