TY - JOUR
T1 - Astroglial nitration after postnatal excitotoxic damage: Correlation with nitric oxide sources, cytoskeletal, apoptotic and antioxidant proteins
AU - Acarin, Laia
AU - Peluffo, Hugo
AU - Barbeito, Luis
AU - Castellano, Bernardo
AU - González, Berta
PY - 2005/1/1
Y1 - 2005/1/1
N2 - Oxygen free radicals and nitric oxide (NO) participate in the pathogenesis of acute central nervous system (CNS) injury by forming peroxynitrite, which promotes oxidative damage and tyrosine nitration. Neuronal nitration is associated with cell death, but little is known of the characteristics and cell fate of nitrated astrocytes. In this study, we have used a postnatal excitotoxic lesion model (intracortical NMDA injection) and our aims were (i) to evaluate the temporal and spatial pattern of astroglial nitration in correlation with the neuropathological process and the sources of NO; and (ii) to establish, if any, the correlation among astrocyte nitration and other events such as expression of cytoskeletal proteins, antioxidant enzymes, and cell death markers to cope with nitration and/or undergo cell death. Our results show that after postnatal excitotoxic damage two distinct waves of nitration were observed in relation to astrocytes. At 24 h post-lesion, early-nitrated astrocytes were found within the neurodegenerating area, coinciding with the time of maximal cell death. These early-nitrated astrocytes are highly ramified protoplasmic cells, showing diffuse glial fibrillary acidic protein (GFAP) content and expressing inducible NOS. At later time-points, when astrogliosis is morphologically evident, nitrated hypertrophied reactive astrocytes are observed in the penumbra and the neurodegenerated area, displaying increased expression of GFAP and vimentin cytoskeletal proteins and of metallothionein I-II and Cu/Zn superoxide dismutase antioxidant proteins. Moreover, despite revealing activated caspase-3, they do not show TUNEL labeling. In summary, we show that nitrated astrocytes in vivo constitute a subpopulation of highly reactive astrocytes which display high resistance towards oxidative stress induced cell death.
AB - Oxygen free radicals and nitric oxide (NO) participate in the pathogenesis of acute central nervous system (CNS) injury by forming peroxynitrite, which promotes oxidative damage and tyrosine nitration. Neuronal nitration is associated with cell death, but little is known of the characteristics and cell fate of nitrated astrocytes. In this study, we have used a postnatal excitotoxic lesion model (intracortical NMDA injection) and our aims were (i) to evaluate the temporal and spatial pattern of astroglial nitration in correlation with the neuropathological process and the sources of NO; and (ii) to establish, if any, the correlation among astrocyte nitration and other events such as expression of cytoskeletal proteins, antioxidant enzymes, and cell death markers to cope with nitration and/or undergo cell death. Our results show that after postnatal excitotoxic damage two distinct waves of nitration were observed in relation to astrocytes. At 24 h post-lesion, early-nitrated astrocytes were found within the neurodegenerating area, coinciding with the time of maximal cell death. These early-nitrated astrocytes are highly ramified protoplasmic cells, showing diffuse glial fibrillary acidic protein (GFAP) content and expressing inducible NOS. At later time-points, when astrogliosis is morphologically evident, nitrated hypertrophied reactive astrocytes are observed in the penumbra and the neurodegenerated area, displaying increased expression of GFAP and vimentin cytoskeletal proteins and of metallothionein I-II and Cu/Zn superoxide dismutase antioxidant proteins. Moreover, despite revealing activated caspase-3, they do not show TUNEL labeling. In summary, we show that nitrated astrocytes in vivo constitute a subpopulation of highly reactive astrocytes which display high resistance towards oxidative stress induced cell death.
KW - Caspase-3
KW - Cu/Zn SOD
KW - Metallothionein
KW - Nitrotyrosine
KW - Oxidative stress
KW - TUNEL
KW - Vimentin
U2 - 10.1089/neu.2005.22.189
DO - 10.1089/neu.2005.22.189
M3 - Article
SN - 0897-7151
VL - 22
SP - 189
EP - 200
JO - Journal of Neurotrauma
JF - Journal of Neurotrauma
ER -