Approximating Mills ratio

Armengol Gasull, Frederic Utzet

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

37 Cites (Scopus)

Resum

Consider the Mills ratio f(x) = (1 - Φ(x))/φ(x), x≥ 0, where φ is the density function of the standard Gaussian law and Φ its cumulative distribution. We introduce a general procedure to approximate f on the whole [0, ∞) which allows to prove interesting properties where f is involved. As applications we present a new proof that 1/. f is strictly convex, and we give new sharp bounds of f involving rational functions, functions with square roots or exponential terms. Also Chernoff type bounds for the Gaussian Q-function are studied. © 2014 Elsevier Inc.
Idioma originalAnglès
Pàgines (de-a)1832-1853
RevistaJournal of Mathematical Analysis and Applications
Volum420
Número2
DOIs
Estat de la publicacióPublicada - 15 de des. 2014

Fingerprint

Navegar pels temes de recerca de 'Approximating Mills ratio'. Junts formen un fingerprint únic.

Com citar-ho