Applications of the landscape function for Schrödinger operators with singular potentials and irregular magnetic fields

Producció científica: Contribució a una revistaArticleRecercaAvaluat per experts

Resum

We resolve both a conjecture and a problem of Z. Shen from the 90's regarding non-asymptotic bounds on the eigenvalue counting function of the magnetic Schrödinger operator L=−(∇−ia)+V with a singular or irregular magnetic field B on R, n≥3. We do this by constructing a new landscape function for L, and proving its corresponding uncertainty principle, under certain directionality assumptions on B, but with no assumption on ∇B. These results arise as applications of our study of the Filoche-Mayboroda landscape function u, a solution to the equation Lu=−divA∇u+Vu=1, on unbounded Lipschitz domains in R, n≥1, and 0≤V∈L , under a mild decay condition on the Green's function. For L, we prove a priori exponential decay of Green's function, eigenfunctions, and Lax-Milgram solutions in an Agmon distance with weight 1/u, which may degenerate. Similar a priori results hold for L. Furthermore, when n≥3 and V satisfies a scale-invariant Kato condition and a weak doubling property, we show that 1/u is pointwise equivalent to the Fefferman-Phong-Shen maximal function m(⋅,V) (also known as Shen's critical radius function); in particular this gives a setting where the Agmon distance with weight 1/u is not too degenerate. Finally, we extend results from the literature for L regarding exponential decay of the fundamental solution and eigenfunctions, to the situation of irregular magnetic fields with directionality assumptions.
Idioma originalEnglish
Número d’article109665
RevistaAdvances in mathematics
Volum445
DOIs
Estat de la publicacióPublicada - de maig 2024

Fingerprint

Navegar pels temes de recerca de 'Applications of the landscape function for Schrödinger operators with singular potentials and irregular magnetic fields'. Junts formen un fingerprint únic.

Com citar-ho