TY - JOUR
T1 - Angle-Dependent Photoluminescence Spectroscopy of Solution-Processed Organic Semiconducting Nanobelts
AU - Wang, Mao
AU - Gong, Yi
AU - Alzina, Francesc
AU - Sotomayor Torres, Clivia M.
AU - Li, Hongxiang
AU - Zhang, Zhiliang
AU - He, Jianying
PY - 2017/6/8
Y1 - 2017/6/8
N2 - © 2017 American Chemical Society. We report an anomalous anisotropy in photoluminescence (PL) from crystalline nanobelt of an organic small-molecule semiconductor, 6,13-dichloropentacene (DCP). Large-area well-aligned DCP nanobelt arrays are readily formed by self-assembly through solution method utilizing the strong anisotropic interactions between molecules. The absorption spectrum of the arrays suggests the formation of both intramolecular exciton and intermolecular exciton. However, the results of angle-dependent PL spectroscopy indicate that the PL arises only from the relaxation of intramolecular exciton, which has an optical transition dipole moment with an angle of 115° with the long-axis of the nanobelts. The angular dependence of PL signals follows a quartic rule (IPL(θ) ∞ cos4(θ - 115)) and agrees well with the optical selection rule of individual DCP molecules. The measured polarization ratio ρ from the individual nanobelts is on average 0.91 ± 0.02, superior to that of prior-art organic semiconductors. These results provide new insights into exciton behavior in 1D π-π stacking organic semiconductors and demonstrate DCP's great potential in the photodetectors and optical switches for large-scale organic optoelectronics.
AB - © 2017 American Chemical Society. We report an anomalous anisotropy in photoluminescence (PL) from crystalline nanobelt of an organic small-molecule semiconductor, 6,13-dichloropentacene (DCP). Large-area well-aligned DCP nanobelt arrays are readily formed by self-assembly through solution method utilizing the strong anisotropic interactions between molecules. The absorption spectrum of the arrays suggests the formation of both intramolecular exciton and intermolecular exciton. However, the results of angle-dependent PL spectroscopy indicate that the PL arises only from the relaxation of intramolecular exciton, which has an optical transition dipole moment with an angle of 115° with the long-axis of the nanobelts. The angular dependence of PL signals follows a quartic rule (IPL(θ) ∞ cos4(θ - 115)) and agrees well with the optical selection rule of individual DCP molecules. The measured polarization ratio ρ from the individual nanobelts is on average 0.91 ± 0.02, superior to that of prior-art organic semiconductors. These results provide new insights into exciton behavior in 1D π-π stacking organic semiconductors and demonstrate DCP's great potential in the photodetectors and optical switches for large-scale organic optoelectronics.
U2 - 10.1021/acs.jpcc.7b02958
DO - 10.1021/acs.jpcc.7b02958
M3 - Article
SN - 1932-7447
VL - 121
SP - 12441
EP - 12446
JO - Journal of Physical Chemistry C
JF - Journal of Physical Chemistry C
IS - 22
ER -