Analyzing the I/O Patterns of Deep Learning Applications

Edixon Párraga*, Betzabeth León, Román Bond, Diego Encinas, Aprigio Bezerra, Sandra Mendez, Dolores Rexachs, Emilio Luque

*Autor corresponent d’aquest treball

Producció científica: Capítol de llibreCapítolRecercaAvaluat per experts

Resum

A traditional HPC storage system is designed to manage an I/O workload dominated by write operation bursts, mainly for applications carrying out simulations and checkpointing partial results. Currently, this context is more diverse because of artificial intelligence applications’ workload, such as machine learning and deep learning. As ML/DL applications are becoming more compute-intensive, they require the power of HPC systems. However, the HPC I/O system could be a bottleneck to scaling these kind of applications, mainly in the training stage. In this paper, we present a methodology for analyzing the I/O patterns of deep learning applications that allows us to understand the DL applications’ I/O in HPC systems. We have applied our approach to serial and distributed DL codes by using the TensorFlow2 and PyTorch framework for the MNIST and CIFAR-10 datasets.

Idioma originalAnglès
Títol de la publicacióCloud Computing, Big Data and Emerging Topics - 9th Conference, JCC-BDandET 2021, Proceedings
EditorsMarcelo Naiouf, Enzo Rucci, Franco Chichizola, Laura De Giusti
EditorSpringer Science and Business Media Deutschland GmbH
Pàgines3-16
Nombre de pàgines14
ISBN (imprès)9783030848248
DOIs
Estat de la publicacióPublicada - 16 d’ag. 2021

Sèrie de publicacions

NomCommunications in Computer and Information Science
Volum1444 CCIS
ISSN (imprès)1865-0929
ISSN (electrònic)1865-0937

Fingerprint

Navegar pels temes de recerca de 'Analyzing the I/O Patterns of Deep Learning Applications'. Junts formen un fingerprint únic.

Com citar-ho