Analysis of missing data with artificial neural networks: A simulation study

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

7 Cites (Scopus)

Resum

In the last years it has been consolidated the use of artificial neural nets as a complement to statistical methods. However, it has not been deeply studied neither how the presence of missing data affects artificial neuronal nets nor the establishment of the best strategies to treat missing data in the stage of statistical analysis. In our work we investigate the effectiveness of different techniques to face missing data in univariant descriptive analysis and in the generation of classification models, including multilayer perceptron and radial basis function neural nets. Our results suggest that, in general, artificial neural nets are more effective in decreasing the imputation error than other broadly used analysis techniques.
Idioma originalAnglès
Pàgines (de-a)503-510
RevistaPsicothema
Volum12
Número3
Estat de la publicacióPublicada - 1 d’ag. 2000

Fingerprint

Navegar pels temes de recerca de 'Analysis of missing data with artificial neural networks: A simulation study'. Junts formen un fingerprint únic.

Com citar-ho