An Additive Subfamily of Enlargements of a Maximally Monotone Operator

Regina S. Burachik, Juan Enrique Martínez-Legaz, Mahboubeh Rezaie, Michel Théra

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

5 Cites (Scopus)

Resum

© 2015, Springer Science+Business Media Dordrecht. We introduce a subfamily of additive enlargements of a maximally monotone operator. Our definition is inspired by the early work of Simon Fitzpatrick. These enlargements constitute a subfamily of the family of enlargements introduced by Svaiter. When the operator under consideration is the subdifferential of a convex lower semicontinuous proper function, we prove that some members of the subfamily are smaller than the classical ε-subdifferential enlargement widely used in convex analysis. We also recover the ε-subdifferential within the subfamily. Since they are all additive, the enlargements in our subfamily can be seen as structurally closer to the ε-subdifferential enlargement.
Idioma originalAnglès
Pàgines (de-a)643-665
RevistaSet-Valued and Variational Analysis
Volum23
Número4
DOIs
Estat de la publicacióPublicada - 1 de des. 2015

Fingerprint

Navegar pels temes de recerca de 'An Additive Subfamily of Enlargements of a Maximally Monotone Operator'. Junts formen un fingerprint únic.

Com citar-ho