Resum
We show that piecewise smooth maps with a finite number of pieces of monotonicity and nowhere vanishing Lipschitz continuous derivative can have only period doubling solenoids. The proof is based on the fact that if p1 < ... < pn is a periodic orbit of a continuous map f then there is a union set {q1,..., qn-1} of some periodic orbits of f such that Pi < qi < Pi+i for any i.
Idioma original | Anglès |
---|---|
Pàgines (de-a) | 121-138 |
Revista | Fundamenta Mathematicae |
Volum | 157 |
Número | 2-3 |
Estat de la publicació | Publicada - 1 de des. 1998 |