Algebras and groups defined by permutation relations of alternating type

Ferran Cedó, Eric Jespers, Jan Okniński

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

5 Cites (Scopus)

Resum

The class of finitely presented algebras over a field K with a set of generators a1,...,an and defined by homogeneous relations of the form a1a2...an=aσ(1)aσ(2)...aσ(n), where σ runs through Altn, the alternating group of degree n, is considered. The associated group, defined by the same (group) presentation, is described. A description of the Jacobson radical of the algebra is found. It turns out that the radical is a finitely generated ideal that is nilpotent and it is determined by a congruence on the underlying monoid, defined by the same presentation. © 2010 Elsevier Inc.
Idioma originalAnglès
Pàgines (de-a)1290-1313
RevistaJournal of Algebra
Volum324
DOIs
Estat de la publicacióPublicada - 1 de set. 2010

Fingerprint

Navegar pels temes de recerca de 'Algebras and groups defined by permutation relations of alternating type'. Junts formen un fingerprint únic.

Com citar-ho