Algebraic limit cycles bifurcating from algebraic ovals of quadratic centers

Jaume Llibre, Yun Tian

Producció científica: Contribució a una revistaArticleRecerca

2 Cites (Scopus)

Resum

© 2018 World Scientific Publishing Company. In the integrability of polynomial differential systems it is well known that the invariant algebraic curves play a relevant role. Here we will see that they can also play an important role with respect to limit cycles. In this paper, we study quadratic polynomial systems with an algebraic periodic orbit of degree 4 surrounding a center. We show that there exists only one family of such systems satisfying that an algebraic limit cycle of degree 4 can bifurcate from the period annulus of the mentioned center under quadratic perturbations.
Idioma originalEnglish
Número d’article1850145
RevistaInternational Journal of Bifurcation and Chaos in Applied Sciences and Engineering
Volum28
DOIs
Estat de la publicacióPublicada - 1 de nov. 2018

Fingerprint

Navegar pels temes de recerca de 'Algebraic limit cycles bifurcating from algebraic ovals of quadratic centers'. Junts formen un fingerprint únic.

Com citar-ho