Agent-based simheuristics: Extending simulation-optimization algorithms via distributed and parallel computing

Javier Panadero, Angel A. Juan, Jose M. Mozos, Canan Gunes Corlu, Bhakti Stephan Onggo

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

5 Cites (Scopus)

Resum

This paper presents a novel agent-based simheuristic (ABSH) approach that combines simheuristic and multi-agent system to efficiently solve stochastic combinatorial optimization problems. In an ABSH approach, multiple agents cooperate in searching a near-optimal solution to a stochastic combinatorial optimization problem inside a vast space of feasible solutions. Each of these agents is a simheuristic algorithm integrating simulation within a metaheuristic optimization framework. Each agent follows a different pattern while exploring the solution space. However, all simheuristic agents cooperate in the search of a near-optimal solution by sharing critical information among them. The distributed nature of the multi-agent system makes it easy for ABSH to make use of parallel and distributed computing technology. This paper discusses the potential of this novel simulation-optimization approach and illustrates, with a computational experiment, the advantages that ABSH approaches offer over traditional simheuristic ones.

Idioma originalAnglès
Pàgines (de-a)869-880
Nombre de pàgines12
RevistaProceedings - Winter Simulation Conference
DOIs
Estat de la publicacióPublicada - 2 de jul. 2018

Fingerprint

Navegar pels temes de recerca de 'Agent-based simheuristics: Extending simulation-optimization algorithms via distributed and parallel computing'. Junts formen un fingerprint únic.

Com citar-ho