Resum
We propose a theory of adiabaticity in quantum Markovian dynamics based on a decomposition of the Hilbert space induced by the asymptotic behavior of the Lindblad semigroup. A central idea of our approach is that the natural generalization of the concept of eigenspace of the Hamiltonian in the case of Markovian dynamics is a noiseless subsystem with a minimal noisy cofactor. Unlike previous attempts to define adiabaticity for open systems, our approach deals exclusively with physical entities and provides a simple, intuitive picture at the Hilbert-space level, linking the notion of adiabaticity to the theory of noiseless subsystems. As two applications of our theory, we propose a general framework for decoherence-assisted computation in noiseless codes and a dissipation-driven approach to holonomic computation based on adiabatic dragging of subsystems that is generally not achievable by nondissipative means. © 2010 The American Physical Society.
Idioma original | English |
---|---|
Número d’article | 050503 |
Revista | Physical Review Letters |
Volum | 105 |
DOIs | |
Estat de la publicació | Publicada - 30 de jul. 2010 |