Accelerating Edit-Distance Sequence Alignment on GPU Using the Wavefront Algorithm

Quim Aguado-Puig, Santiago Marco-Sola, Juan Carlos Moure, David Castells-Rufas, Lluc Alvarez, Antonio Espinosa, Miquel Moreto

Producció científica: Contribució a una revistaArticleRecercaAvaluat per experts

9 Cites (Scopus)

Resum

Sequence alignment remains a fundamental problem with practical applications ranging from pattern recognition to computational biology. Traditional algorithms based on dynamic programming are hard to parallelize, require significant amounts of memory, and fail to scale for large inputs. This work presents eWFA-GPU, a GPU (graphics processing unit)-accelerated tool to compute the exact edit-distance sequence alignment based on the wavefront alignment algorithm (WFA). This approach exploits the similarities between the input sequences to accelerate the alignment process while requiring less memory than other algorithms. Our implementation takes full advantage of the massive parallel capabilities of modern GPUs to accelerate the alignment process. In addition, we propose a succinct representation of the alignment data that successfully reduces the overall amount of memory required, allowing the exploitation of the fast shared memory of a GPU. Our results show that our GPU implementation outperforms by 3-9× the baseline edit-distance WFA implementation running on a 20 core machine. As a result, eWFA-GPU is up to 265 times faster than state-of-the-art CPU implementation, and up to 56 times faster than state-of-the-art GPU implementations.

Idioma originalEnglish
Pàgines (de-a)63782-63796
Nombre de pàgines15
RevistaIEEE Access
Volum10
DOIs
Estat de la publicacióPublicada - 13 de juny 2022

Fingerprint

Navegar pels temes de recerca de 'Accelerating Edit-Distance Sequence Alignment on GPU Using the Wavefront Algorithm'. Junts formen un fingerprint únic.

Com citar-ho