Absolute Continuity of Solutions to Reaction-Diffusion Equations with Multiplicative Noise

Carlo Marinelli*, Lluís Quer-Sardanyons

*Autor corresponent d’aquest treball

Producció científica: Contribució a una revistaArticleRecercaAvaluat per experts

2 Cites (Scopus)
1 Descàrregues (Pure)

Resum

We prove absolute continuity of the law of the solution, evaluated at fixed points in time and space, to a parabolic dissipative stochastic PDE on L2(G), where G is an open bounded domain in ℝd with smooth boundary. The equation is driven by a multiplicative Wiener noise and the nonlinear drift term is the superposition operator associated to a real function that is assumed to be monotone, locally Lipschitz continuous, and growing not faster than a polynomial. The proof, which uses arguments of the Malliavin calculus, crucially relies on the well-posedness theory in the mild sense for stochastic evolution equations in Banach spaces.

Idioma originalEnglish
Pàgines (de-a)243-261
Nombre de pàgines19
RevistaPotential Analysis
Volum57
Número2
DOIs
Estat de la publicacióPublicada - d’ag. 2022

Fingerprint

Navegar pels temes de recerca de 'Absolute Continuity of Solutions to Reaction-Diffusion Equations with Multiplicative Noise'. Junts formen un fingerprint únic.

Com citar-ho