Projectes per any
Resum
We prove absolute continuity of the law of the solution, evaluated at fixed points in time and space, to a parabolic dissipative stochastic PDE on L2(G), where G is an open bounded domain in ℝd with smooth boundary. The equation is driven by a multiplicative Wiener noise and the nonlinear drift term is the superposition operator associated to a real function that is assumed to be monotone, locally Lipschitz continuous, and growing not faster than a polynomial. The proof, which uses arguments of the Malliavin calculus, crucially relies on the well-posedness theory in the mild sense for stochastic evolution equations in Banach spaces.
Idioma original | English |
---|---|
Pàgines (de-a) | 243-261 |
Nombre de pàgines | 19 |
Revista | Potential Analysis |
Volum | 57 |
Número | 2 |
DOIs | |
Estat de la publicació | Publicada - d’ag. 2022 |
Fingerprint
Navegar pels temes de recerca de 'Absolute Continuity of Solutions to Reaction-Diffusion Equations with Multiplicative Noise'. Junts formen un fingerprint únic.Projectes
- 1 Acabat
-
Modelos estocásticos y aplicaciones
Bardina Simorra, X. (Investigador/a principal), Rovira Escofet, C. (Investigador/a Principal 2), Delgado de la Torre, R. (Investigador/a), Jolis Gimenez, M. (Investigador/a), Márquez Carreras, D. (Investigador/a), Quer Sardanyons, L. A. (Investigador/a) & Binotto ., G. (Col.laborador/a)
Ministerio de Ciencia e Innovación (MICINN)
1/01/19 → 30/09/22
Projecte: Projectes i Ajuts a la Recerca