A variable neighborhood search simheuristic for project portfolio selection under uncertainty

Javier Panadero*, Jana Doering, Renatas Kizys, Angel A. Juan, Angels Fito

*Autor corresponent d’aquest treball

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

59 Cites (Scopus)
1 Descàrregues (Pure)

Resum

With limited financial resources, decision-makers in firms and governments face the task of selecting the best portfolio of projects to invest in. As the pool of project proposals increases and more realistic constraints are considered, the problem becomes NP-hard. Thus, metaheuristics have been employed for solving large instances of the project portfolio selection problem (PPSP). However, most of the existing works do not account for uncertainty. This paper contributes to close this gap by analyzing a stochastic version of the PPSP: the goal is to maximize the expected net present value of the inversion, while considering random cash flows and discount rates in future periods, as well as a rich set of constraints including the maximum risk allowed. To solve this stochastic PPSP, a simulation-optimization algorithm is introduced. Our approach integrates a variable neighborhood search metaheuristic with Monte Carlo simulation. A series of computational experiments contribute to validate our approach and illustrate how the solutions vary as the level of uncertainty increases.

Idioma originalAnglès
Pàgines (de-a)353-375
Nombre de pàgines23
RevistaJournal of Heuristics
Volum26
Número3
DOIs
Estat de la publicacióPublicada - 1 de juny 2020

Fingerprint

Navegar pels temes de recerca de 'A variable neighborhood search simheuristic for project portfolio selection under uncertainty'. Junts formen un fingerprint únic.

Com citar-ho