A semi-agnostic ansatz with variable structure for variational quantum algorithms

Matias Bilkis, Marco Cerezo, Guillaume Verdon, Patrick Coles, Lukasz Cincio

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

14 Cites (Scopus)

Resum

Quantum machine learning-and specifically Variational Quantum Algorithms (VQAs)-offers a powerful, flexible paradigm for programming near-term quantum computers, with applications in chemistry, metrology, materials science, data science, and mathematics. Here, one trains an ansatz, in the form of a parameterized quantum circuit, to accomplish a task of interest. However, challenges have recently emerged suggesting that deep ansatzes are difficult to train, due to flat training landscapes caused by randomness or by hardware noise. This motivates our work, where we present a variable structure approach to build ansatzes for VQAs. Our approach, called VAns (Variable Ansatz), applies a set of rules to both grow and (crucially) remove quantum gates in an informed manner during the optimization. Consequently, VAns is ideally suited to mitigate trainability and noise-related issues by keeping the ansatz shallow. We employ VAns in the variational quantum eigensolver for condensed matter and quantum chemistry applications, in the quantum autoencoder for data compression and in unitary compilation problems showing successful results in all cases.
Idioma originalAnglès
RevistaQuantum Machine Intelligence
Volum5
Número2
DOIs
Estat de la publicacióPublicada - 2023

Fingerprint

Navegar pels temes de recerca de 'A semi-agnostic ansatz with variable structure for variational quantum algorithms'. Junts formen un fingerprint únic.
  • DYNAMICAL RESOURCES IN QUANTUM INFORMATION

    Muñoz Tapia, R. (PI), Calsamiglia Costa, J. (Investigador/a Principal 2), Baghali Khanian, Z. (Col.laborador/a), Bilkis , M. (Col.laborador/a), Marconi , C. (Col.laborador/a), Martínez-Vargas, E. (Col.laborador/a), Riera Campeny, A. (Col.laborador/a), Rosati , M. (Col.laborador/a), Salek Shishavan, F. (Col.laborador/a), Skoteiniotis ., M. (Col.laborador/a), Strasberg ., P. (Col.laborador/a), Bagan Capella, E. (Investigador/a), Pons Barba, M. L. (Investigador/a), Sanpera Trigueros, A. (Investigador/a), Sentís Herrera, G. (Investigador/a), Winter , A. J. (Investigador/a), Díaz, M. G. (Col.laborador/a), Hoogsteder Riera, M. (Col.laborador/a), Gasbarri ., G. (Col.laborador/a), Fanizza ., M. (Col.laborador/a), Llorens Fernandez, S. (Col.laborador/a), Schindler ., J. C. (Col.laborador/a), Gavorova , Z. (Col.laborador/a), Cai , M. (Col.laborador/a), Zartab ., M. (Col.laborador/a), Galke ., N. (Col.laborador/a), Kothakonda , N. B. T. (Col.laborador/a), Ahiable , J. (Col.laborador/a), Roda Salichs, E. (Col.laborador/a), Svampa, I. (Col.laborador/a), Kunjwal, R. (Col.laborador/a), di Pietro, A. (Col.laborador/a), Strelchuk, S. (Col.laborador/a), Gerhard, K. S. (Col.laborador/a), Kleinmann, M. (Col.laborador/a) & Buscemi, F. (Col.laborador/a)

    1/01/2030/09/23

    Projecte: Projectes i Ajuts a la Recerca

Com citar-ho