A second order analysis of the periodic solutions for nonlinear periodic differential systems with a small parameter

Adriana Buic, Jaume Giné, Jaume Llibre

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

19 Cites (Scopus)

Resum

We deal with nonlinear T-periodic differential systems depending on a small parameter. The unperturbed system has an invariant manifold of periodic solutions. We provide the expressions of the bifurcation functions up to second order in the small parameter in order that their simple zeros are initial values of the periodic solutions that persist after the perturbation. In the end two applications are done. The key tool for proving the main result is the LyapunovSchmidt reduction method applied to the T-PoincaréAndronov mapping. © 2011 Elsevier B.V. All rights reserved.
Idioma originalAnglès
Pàgines (de-a)528-533
RevistaPhysica D: Nonlinear Phenomena
Volum241
Número5
DOIs
Estat de la publicacióPublicada - 1 de març 2012

Fingerprint

Navegar pels temes de recerca de 'A second order analysis of the periodic solutions for nonlinear periodic differential systems with a small parameter'. Junts formen un fingerprint únic.

Com citar-ho