A reactive simheuristic using online data for a real-life inventory routing problem with stochastic demands

David Raba*, Alejandro Estrada-Moreno, Javier Panadero, Angel A. Juan

*Autor corresponent d’aquest treball

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

20 Cites (Scopus)

Resum

In the context of a supply chain for the animal-feed industry, this paper focuses on optimizing replenishment strategies for silos in multiple farms. Assuming that a supply chain is essentially a value chain, our work aims at narrowing this chasm and putting analytics into practice by identifying and quantifying improvements on specific stages of an animal-feed supply chain. Motivated by a real-life case, the paper analyses a rich multi-period inventory routing problem with homogeneous fleet, stochastic demands, and maximum route length. After describing the problem and reviewing the related literature, we introduce a reactive heuristic, which is then extended into a biased-randomized simheuristic. Our reactive approach is validated and tested using a series of adapted instances to explore the gap between the solutions it provides and the ones generated by existing nonreactive approaches.

Idioma originalAnglès
Pàgines (de-a)2785-2816
Nombre de pàgines32
RevistaInternational Transactions in Operational Research
Volum27
Número6
DOIs
Estat de la publicacióPublicada - 1 de nov. 2020

Fingerprint

Navegar pels temes de recerca de 'A reactive simheuristic using online data for a real-life inventory routing problem with stochastic demands'. Junts formen un fingerprint únic.

Com citar-ho