A Quasiconvex Asymptotic Function with Applications in Optimization

Nicolas Hadjisavvas, Felipe Lara, Juan Enrique Martínez-Legaz

Producció científica: Contribució a revistaArticleRecerca

21 Cites (Scopus)

Resum

© 2018, Springer Science+Business Media, LLC, part of Springer Nature. We introduce a new asymptotic function, which is mainly adapted to quasiconvex functions. We establish several properties and calculus rules for this concept and compare it to previous notions of generalized asymptotic functions. Finally, we apply our new definition to quasiconvex optimization problems: we characterize the boundedness of the function, and the nonemptiness and compactness of the set of minimizers. We also provide a sufficient condition for the closedness of the image of a nonempty closed and convex set via a vector-valued function.
Idioma originalAnglès
Pàgines (de-a)170-186
Nombre de pàgines17
RevistaJournal of Optimization Theory and Applications
Volum180
Número1
DOIs
Estat de la publicacióPublicada - 15 de gen. 2019

Fingerprint

Navegar pels temes de recerca de 'A Quasiconvex Asymptotic Function with Applications in Optimization'. Junts formen un fingerprint únic.

Com citar-ho