A note on the set of periods of transversal homological sphere self-maps

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

13 Cites (Scopus)

Resum

Let M be a n-dimensional manifold with the same homology than the n-dimensional sphere. A C1 map f : M → M is called transversal if for all m ∈ ℕ the graph of fm intersects transversally the diagonal of M × M at each point (x, x) such that x is a fixed point of fm. We study the minimal set of periods of f by using the Lefschetz numbers for periodic points. In the particular case that n is even, we also study the set of periods for the transversal holomorphic self-maps of M.
Idioma originalAnglès
Pàgines (de-a)417-422
RevistaJournal of Difference Equations and Applications
Volum9
DOIs
Estat de la publicacióPublicada - 1 de març 2003

Fingerprint

Navegar pels temes de recerca de 'A note on the set of periods of transversal homological sphere self-maps'. Junts formen un fingerprint únic.

Com citar-ho