A non-parametric regression approach to repeated measures analysis in cancer experiments

M. Carme Ruiz De Villa, M. Salomé E. Cabral, Eduardo Escrich Escriche, Montse Solanas

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

2 Cites (Scopus)

Resum

The validity conditions for univariate or multivariate analyses of repeated measures are highly sensitive to the usual assumptions. In cancer experiments, the data are frequently heteroscedastic and strongly correlated with time, and standard analyses do not perform well. Alternative non-parametric approaches can contribute to an analysis of these longitudinal data. This paper describes a method for such situations, using the results from a comparative experiment in which tumour volume is evaluated over time. First, we apply the non-parametric approach proposed by Raz in constructing a randomization F-test for comparing treatments. A local polynomial fit is conducted to estimate the growth curves and confidence intervals for each treatment. Finally, this technique is used to estimate the velocity of tumour growth.
Idioma originalAnglès
Pàgines (de-a)601-611
RevistaJournal of Applied Statistics
Volum26
Número5
Estat de la publicacióPublicada - 1 de des. 1999

Fingerprint

Navegar pels temes de recerca de 'A non-parametric regression approach to repeated measures analysis in cancer experiments'. Junts formen un fingerprint únic.

Com citar-ho