A Genetic Algorithm Simheuristic for the Open UAV Task Assignment and Routing Problem with Stochastic Traveling and Servicing Times

Angel A. Juan, Alfons Freixes, Pedro Copado, Javier Panadero, Juan F. Gomez, Carles Serrat

Producció científica: Capítol de llibreCapítolRecercaAvaluat per experts

5 Cites (Scopus)

Resum

Due to their flexibility, unmanned aerial vehicles (UAVs) are gaining importance in transportation and surveillance activities. The usage of UAV swarms raises the need for coordination and optimization of task assignments. Some of these operations can be modeled as team orienteering problems (TOP). This paper analyzes an open TOP in which a given fleet of homogeneous UAVs, initially located at a single depot, need to be coordinated in order to maximize the collection of rewards from visiting nodes without exceeding a maximum operation time. As in most real-life applications, both traveling times and servicing times at each node are modeled as random variables. To solve this NP-hard and stochastic optimization problem, a simheuristic based on the combination of a genetic algorithm with Monte Carlo simulation is proposed.

Idioma originalAnglès
Títol de la publicació2021 Winter Simulation Conference, WSC 2021
EditorInstitute of Electrical and Electronics Engineers Inc.
Nombre de pàgines12
ISBN (electrònic)9781665433112
ISBN (imprès)978-1-6654-3312-9
DOIs
Estat de la publicacióPublicada - 2021

Sèrie de publicacions

NomProceedings - Winter Simulation Conference
Volum2021-December
ISSN (imprès)0891-7736

Fingerprint

Navegar pels temes de recerca de 'A Genetic Algorithm Simheuristic for the Open UAV Task Assignment and Routing Problem with Stochastic Traveling and Servicing Times'. Junts formen un fingerprint únic.

Com citar-ho