A Generic Image Retrieval Method for Date Estimation of Historical Document Collections

Adrià Molina*, Lluis Gomez, Oriol Ramos Terrades, Josep Lladós

*Autor corresponent d’aquest treball

Producció científica: Llibre/InformeLlibre d'ActesRecercaAvaluat per experts


Date estimation of historical document images is a challenging problem, with several contributions in the literature that lack of the ability to generalize from one dataset to others. This paper presents a robust date estimation system based in a retrieval approach that generalizes well in front of heterogeneous collections. We use a ranking loss function named smooth-nDCG to train a Convolutional Neural Network that learns an ordination of documents for each problem. One of the main usages of the presented approach is as a tool for historical contextual retrieval. It means that scholars could perform comparative analysis of historical images from big datasets in terms of the period where they were produced. We provide experimental evaluation on different types of documents from real datasets of manuscript and newspaper images.

Idioma originalEnglish
Nombre de pàgines15
Estat de la publicacióPublicada - 2022

Sèrie de publicacions

NomLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volum13237 LNCS


Navegar pels temes de recerca de 'A Generic Image Retrieval Method for Date Estimation of Historical Document Collections'. Junts formen un fingerprint únic.

Com citar-ho