A fully discrete approximation of the one-dimensional stochastic heat equation

Rikard Anton, David Cohen*, Lluis Quer-Sardanyons

*Autor corresponent d’aquest treball

Producció científica: Contribució a una revistaArticleRecercaAvaluat per experts

20 Cites (Scopus)
1 Descàrregues (Pure)

Resum

A fully discrete approximation of the one-dimensional stochastic heat equation driven by multiplicative space-time white noise is presented. The standard finite difference approximation is used in space and a stochastic exponential method is used for the temporal approximation. Observe that the proposed exponential scheme does not suffer from any kind of CFL-type step size restriction. When the drift term and the diffusion coefficient are assumed to be globally Lipschitz this explicit time integrator allows for error bounds in $L^q(\varOmega) $, for all $q\geqslant 2$, improving some existing results in the literature. On top of this we also prove almost sure convergence of the numerical scheme. In the case of nonglobally Lipschitz coefficients, under a strong assumption about pathwise uniqueness of the exact solution, convergence in probability of the numerical solution to the exact solution is proved. Numerical experiments are presented to illustrate the theoretical results.

Idioma originalEnglish
Pàgines (de-a)247-284
Nombre de pàgines38
RevistaIMA Journal of Numerical Analysis
Volum40
Número1
Estat de la publicacióPublicada - 1 de gen. 2020

Fingerprint

Navegar pels temes de recerca de 'A fully discrete approximation of the one-dimensional stochastic heat equation'. Junts formen un fingerprint únic.

Com citar-ho