A connection between cellularization for groups and spaces via two-complexes

José L. Rodríguez, Jérôme Scherer

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

6 Cites (Scopus)

Resum

Let M denote a two-dimensional Moore space (so H2 (M ; Z) = 0), with fundamental group G. The M-cellular spaces are those one can build from M by using wedges, push-outs, and telescopes (and hence all pointed homotopy colimits). The issue we address here is the characterization of the class of M-cellular spaces by means of algebraic properties derived from the group G. We show that the cellular type of the fundamental group and homological information does not suffice, and one is forced to study a certain universal extension. © 2007 Elsevier Ltd. All rights reserved.
Idioma originalAnglès
Pàgines (de-a)1664-1673
RevistaJournal of Pure and Applied Algebra
Volum212
Número7
DOIs
Estat de la publicacióPublicada - 1 de jul. 2008

Fingerprint

Navegar pels temes de recerca de 'A connection between cellularization for groups and spaces via two-complexes'. Junts formen un fingerprint únic.

Com citar-ho