A comparison of global versus local color histograms for object recognition

David Guillamet, Jordi Vitrià

    Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

    12 Cites (Scopus)

    Resum

    Global color distributions have been efficiently used as signatures for object recognition. However, these methods are very sensitive to partial occlusions and to background regions. Our approach is directed to minimize these effects by working with small neighborhoods. In the current work we compare global and local color representations on an automatic object recognition system. Local representations significantly outperformed global representations in terms of recognition rates. Local color distributions are a strong constraint when objects consist of distinctive local regions. Eigenspace techniques are applied to detect discriminant local representations and Support Vector Machines are used during the recognition process in order to maximize the recognition rate. © 2000 IEEE.
    Idioma originalAnglès
    Pàgines (de-a)422-425
    RevistaProceedings - International Conference on Pattern Recognition
    Volum15
    Número2
    Estat de la publicacióPublicada - 1 de des. 2000

    Fingerprint

    Navegar pels temes de recerca de 'A comparison of global versus local color histograms for object recognition'. Junts formen un fingerprint únic.

    Com citar-ho