A case of a modelled saturation level for cooperative flight departures

Nina Schefers, Juan José Ramos González, Jenaro Nosedal

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

2 Cites (Scopus)

Resum

Copyright © 2018 Inderscience Enterprises Ltd. Owing to increasing air traffic operations, the development of advanced decision support tools (DSTs) in air traffic management (ATM) is driven forward to guarantee that sustainable transport logistics balance airspace capacity with user demands. In this paper, the tuning of calculated-take-off times (CTOTs) as a tool for mitigating the propagation of perturbations between trajectories in dense sectors is analysed. The proposed methodology uses a powerful tool for predicting potential spatio-temporal concurrence events between trajectories over the European airspace. In the first place, the aim is to remove the detected concurrence events by considering bounded time stamp adjustments on strategic agreed points of the aircraft trajectory. In the second place, the model is extended to identify route interdependencies of over constraint topologies that could lead to a saturation event. The approach is based on a robust constraint programming model aiming to determine the feasible time stamp changes considering reference based trajectories (RBTs).
Idioma originalAnglès
Pàgines (de-a)310-323
RevistaInternational Journal of Simulation and Process Modelling
Volum13
Número4
DOIs
Estat de la publicacióPublicada - 1 de gen. 2018

Fingerprint

Navegar pels temes de recerca de 'A case of a modelled saturation level for cooperative flight departures'. Junts formen un fingerprint únic.

Com citar-ho