A bivariant theory for the Cuntz semigroup

Joan Bosa, Gabriele Tornetta, Joachim Zacharias

Producció científica: Contribució a una revistaArticleRecerca


© 2019 The Authors We introduce a bivariant version of the Cuntz semigroup as equivalence classes of order zero maps generalizing the ordinary Cuntz semigroup. The theory has many features formally analogous to KK-theory including a composition product. We establish basic properties, like additivity, stability and continuity, and study categorical aspects in the setting of local C⁎-algebras. We determine the bivariant Cuntz semigroup for numerous examples such as when the second algebra is a Kirchberg algebra, and Cuntz homology for compact Hausdorff spaces which provides a complete invariant. Moreover, we establish identities when tensoring with strongly self-absorbing C⁎-algebras. Finally, we show how to use the bivariant Cuntz semigroup of the present work to classify unital and stably finite C⁎-algebras.
Idioma originalEnglish
Pàgines (de-a)1061-1111
Nombre de pàgines51
RevistaJournal of Functional Analysis
Estat de la publicacióPublicada - 15 d’ag. 2019


Navegar pels temes de recerca de 'A bivariant theory for the Cuntz semigroup'. Junts formen un fingerprint únic.

Com citar-ho