A Biased-Randomized Discrete-Event Heuristic for the Hybrid Flow Shop Problem with Batching and Multiple Paths

Christoph Laroque, Madlene Leissau, Pedro Copado, Javier Panadero, Angel A. Juan, Christin Schumacher

Producció científica: Capítol de llibreCapítolRecercaAvaluat per experts

1 Citació (Scopus)

Resum

Based on a real-life use-case, this paper discusses a manufacturing scenario where different jobs be processed by a series of machines. Depending on its type, each job must follow a pre-defined route in the hybrid flow shop, where the aggregation of jobs in batches might be required at several points of a route. This process can be modeled as a hybrid flow shop problem with several additional but realistic restrictions. The objective is to find a good permutation of jobs (solution) that minimizes the makespan. Discrete-event simulation can be used to obtain the makespan value associated with any given permutation. However, to obtain high-quality solutions to the problem, simulation needs to be combined with an optimization component, e.g., a discrete-event heuristic. The proposed approach can find solutions that significantly outperform those provided by employing simulation only and can easily be extended to a simheuristic to account for random processing times.

Idioma originalAnglès
Títol de la publicació2021 Winter Simulation Conference, WSC 2021
EditorInstitute of Electrical and Electronics Engineers Inc.
Nombre de pàgines11
ISBN (electrònic)9781665433112
DOIs
Estat de la publicacióPublicada - 2021

Sèrie de publicacions

NomProceedings - Winter Simulation Conference
Volum2021-December
ISSN (imprès)0891-7736

Fingerprint

Navegar pels temes de recerca de 'A Biased-Randomized Discrete-Event Heuristic for the Hybrid Flow Shop Problem with Batching and Multiple Paths'. Junts formen un fingerprint únic.

Com citar-ho