3DRRDB: Super Resolution of Multiple Remote Sensing Images using 3D Residual in Residual Dense Blocks

Producció científica: Capítol de llibreCapítolRecercaAvaluat per experts

9 Cites (Scopus)

Resum

The rapid advancement of Deep Convolutional Neural Networks helped in solving many remote sensing problems, especially the problems of super-resolution. However, most state-of-the-art methods focus more on Single Image Super-Resolution neglecting Multi-Image Super-Resolution. In this work, a new proposed 3D Residual in Residual Dense Blocks model (3DRRDB) focuses on remote sensing Multi-Image Super-Resolution for two different single spectral bands. The proposed 3DRRDB model explores the idea of 3D convolution layers in deeply connected Dense Blocks and the effect of local and global residual connections with residual scaling in Multi-Image Super-Resolution. The model tested on the Proba-V challenge dataset shows a significant improvement above the current state-of-the-art models scoring a Corrected Peak Signal to Noise Ratio (cPSNR) of 48.79 dB and 50.83 dB for Near Infrared (NIR) and RED Bands respectively. Moreover, the proposed 3DRRDB model scores a Corrected Structural Similarity Index Measure (cSSIM) of 0.9865 and 0.9909

Idioma originalAnglès
Títol de la publicacióProceedings - 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2022
Pàgines322-331
Nombre de pàgines10
ISBN (electrònic)9781665487399
DOIs
Estat de la publicacióPublicada - 2022

Sèrie de publicacions

Nom2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)

Fingerprint

Navegar pels temes de recerca de '3DRRDB: Super Resolution of Multiple Remote Sensing Images using 3D Residual in Residual Dense Blocks'. Junts formen un fingerprint únic.

Com citar-ho