TY - JOUR
T1 - β-Catenin confers resistance to PI3K and AKT inhibitors and subverts FOXO3a to promote metastasis in colon cancer
AU - Tenbaum, Stephan P.
AU - Ordóñez-Morán, Paloma
AU - Puig, Isabel
AU - Chicote, Irene
AU - Arqués, Oriol
AU - Landolfi, Stefania
AU - Fernández, Yolanda
AU - Herance, José Raúl
AU - Gispert, Juan D.
AU - Mendizabal, Leire
AU - Aguilar, Susana
AU - Ramón Y Cajal, Santiago
AU - Schwartz, Simó
AU - Vivancos, Ana
AU - Espín, Eloy
AU - Rojas, Santiago
AU - Baselga, José
AU - Tabernero, Josep
AU - Muñoz, Alberto
AU - Palmer, Héctor G.
N1 - Funding Information:
We thank W. Shao (Novartis Institutes for BioMedical Research, Inc.) for providing the experimental drug, XAV-939, and its inactive analog, LDW-643, and we thank K.F. Becker (Technische Universität München, Germany) for providing the antibody to Snail1. We also thank P.J. Coffer (Utrecht, Netherlands) for providing the pcDNA3-FOXO3a(A3):ERTM expression plasmid, as well as H. Clevers (Utrecht, Netherlands) for providing L8 colon cancer cells. J. Seoane and G. Folch (VHIO, Barcelona, Spain) provided technical advice and reagents. We thank R. Luthra (Molecular Diagnostics Laboratory, MD Anderson Cancer Center, Houston, Texas, USA) for providing the CLIA panel of somatic mutations. We thank M.J. Larriba (Instituto de Investigaciones Biomédicas ‘Alberto Sols’, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain) for providing the reagents necessary for the analysis of Zeb1 and Slug expression and M. Scaltriti (Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts, USA) for supplying the lentiviruses used to knock down IQGAP2 expression. We acknowledge R. Rycroft and A. Wren for their valuable assistance in the preparation of the English version of the manuscript. Experiments were supported by a VHIO starting grant and grants from Fondo de Investigaciones Sanitarias–Instituto de Salud Carlos III (ISCIII) (FIS-PI081356, RETICC-RD06/0020/0075 and RETICC-RD06/0020/0009), and Plan Nacional de Biomedicina, Ministerio de Ciencia e Innovación (SAF-18302). S.P.T. was supported by a Fundació Olga Torres Fellowship, I.P. was funded by the Fundación Científica de la Asociación Española Contra el Cancer (AECC), and H.G.P. was supported by the Miguel Servet Program, ISCIII.
PY - 2012/6
Y1 - 2012/6
N2 - The Wnt-β-catenin and PI3K-AKT-FOXO3a pathways have a central role in cancer. AKT phosporylates FOXO3a, relocating it from the cell nucleus to the cytoplasm, an effect that is reversed by PI3K and AKT inhibitors. Simultaneous hyperactivation of the Wnt-β-catenin pathway and inhibition of PI3K-AKT signaling promote nuclear accumulation of β-catenin and FOXO3a, respectively, promoting cell scattering and metastasis by regulating a defined set of target genes. Indeed, the anti-tumoral AKT inhibitor API-2 promotes nuclear FOXO3a accumulation and metastasis of cells with high nuclear β-catenin content. Nuclear b-catenin confers resistance to the FOXO3a-mediated apoptosis induced by PI3K and AKT inhibitors in patient-derived primary cultures and in corresponding xenograft tumors in mice. This resistance is reversed by XAV-939, an inhibitor of Wnt-β-catenin signaling. In the presence of high nuclear β-catenin content, activation of FOXO3a by PI3K or AKT inhibitors makes it behave as a metastasis inductor rather than a proapoptotic tumor suppressor. We show that it is possible to evaluate the β-catenin status of patients' carcinomas and the response of patient-derived cells to target-directed drugs that accumulate FOXO3a in the nucleus before deciding on a course of treatment. We propose that this evaluation could be essential to the provision of a safer and more effective personalized treatment.
AB - The Wnt-β-catenin and PI3K-AKT-FOXO3a pathways have a central role in cancer. AKT phosporylates FOXO3a, relocating it from the cell nucleus to the cytoplasm, an effect that is reversed by PI3K and AKT inhibitors. Simultaneous hyperactivation of the Wnt-β-catenin pathway and inhibition of PI3K-AKT signaling promote nuclear accumulation of β-catenin and FOXO3a, respectively, promoting cell scattering and metastasis by regulating a defined set of target genes. Indeed, the anti-tumoral AKT inhibitor API-2 promotes nuclear FOXO3a accumulation and metastasis of cells with high nuclear β-catenin content. Nuclear b-catenin confers resistance to the FOXO3a-mediated apoptosis induced by PI3K and AKT inhibitors in patient-derived primary cultures and in corresponding xenograft tumors in mice. This resistance is reversed by XAV-939, an inhibitor of Wnt-β-catenin signaling. In the presence of high nuclear β-catenin content, activation of FOXO3a by PI3K or AKT inhibitors makes it behave as a metastasis inductor rather than a proapoptotic tumor suppressor. We show that it is possible to evaluate the β-catenin status of patients' carcinomas and the response of patient-derived cells to target-directed drugs that accumulate FOXO3a in the nucleus before deciding on a course of treatment. We propose that this evaluation could be essential to the provision of a safer and more effective personalized treatment.
UR - http://www.scopus.com/inward/record.url?scp=84862013453&partnerID=8YFLogxK
U2 - 10.1038/nm.2772
DO - 10.1038/nm.2772
M3 - Article
C2 - 22610277
SN - 1078-8956
VL - 18
SP - 892
EP - 901
JO - Nature Medicine
JF - Nature Medicine
IS - 6
ER -