Saltar a la navegació principal
Saltar a la cerca
Vés al contingut principal
Portal de Recerca de la Universitat Autònoma de Barcelona Inici
Ajuda i PMF
Català
Español
English
Inici
Perfils
Unitats de recerca
Projectes
Producció científica
Conjunts de dades
Tesis doctorals
Cerca per experiència, nom o afiliació
Algunos aspectos de la dinamica global de los sistemas diferenciales: integrabilidad, soluciones periodicas y bifurcaciones
Llibre Salo, Jaume
(Investigador/a principal)
Torregrosa i Arús, Joan
(Investigador/a Principal 2)
Geyer , Anna
(Col.laborador/a)
Pérez González, Set
(Col.laborador/a)
Artes Ferragud, Joan Carles
(Investigador/a)
Caubergh , Magdalena Maria
(Investigador/a)
Cima Mollet, Ana Maria
(Investigador/a)
Corbera Subirana, Montserrat
(Investigador/a)
Cors Iglesias, Josep M.
(Investigador/a)
Ferragut, Antoni
(Investigador/a)
Gasull Embid, Armengol
(Investigador/a)
Pantazi, Chara
(Investigador/a)
Schlomiuk, Dana
(Investigador/a)
Valls, Claudia
(Investigador/a)
Vulpe, Nicolae
(Investigador/a)
Departament de Matemàtiques
Universitat Jaume I
Universitat Politècnica de Catalunya (UPC)
Sense entitat
Universitat de Vic - Universidad Central de Catalunya (UVic-UCC)
Informació general
Fingerprint
Producció científica
(17)
Fingerprint
Explora els temes de recerca tractats en aquest projecte. Les etiquetes es generen en funció dels ajuts rebuts. Juntes formen un fingerprint únic.
Ordenar per
Ponderació
Alfabèticament
Keyphrases
Analytic Differential Systems
16%
Averaging Theory
22%
Best Solution
33%
Bifurcation
11%
Birational Map
33%
Brief Survey
27%
Canard Solutions
25%
Canards
33%
Center Problem
16%
Central Configurations
33%
Chaotic Motion
33%
Cider
33%
Coorbital Satellites
11%
Darboux
16%
Definite Integral
33%
Degenerate Hopf Bifurcation
16%
Difference Equations
33%
Differential System
38%
Difficult Problem
16%
DINAMICA
66%
Discrete Dynamical Systems
11%
Divergence
33%
Eigenvalues
11%
Equilibrium Point
22%
Fast Variables
25%
Fibration
33%
First-order
11%
Folded Singularities
8%
Gauss
33%
Generic Conditions
8%
H1.2
33%
Hamiltonian System with 2-degrees of Freedom
33%
Hamiltonian Systems
33%
Hilbert number
33%
Hindmarsh-Rose Model
33%
Hopf Bifurcation
11%
Hyperchaotic Lorenz System
33%
Integrability
66%
Integrable
33%
Johannes Kepler
33%
Least Square Method
33%
Legendre
33%
Limit Cycle
100%
Linear Algebra
8%
Linear Vector Fields
33%
Linear Vectors
33%
Liouville
33%
Mathematical Model
11%
Motivation
11%
N-body
33%
Neuronal Bursting
8%
New Lower Bound
33%
No Equilibrium
11%
Number of Limit Cycles
36%
One-parameter Family
11%
Period Annulus
33%
Period-doubling Cascade
11%
Periodic Maps
33%
Periodic Orbits
63%
Periodic Solution
11%
Polynomial Differential Systems
33%
Polynomial Vector Fields
16%
Practical Formula
33%
Quartic Polynomial
33%
Regular N-gon
11%
Regular Polyhedra
11%
Reversible Center
33%
Simpson's Method
33%
Singularly Perturbed Systems
33%
Slow Dynamics
8%
Small Amplitude
11%
Smooth Linearization
33%
Straight Line
16%
System Equations
11%
TamB
16%
Three-dimensional (3D)
27%
Uniform Isochronous Center
33%
Valor
33%
Variae
16%
Wine
33%
Zero Entropy
33%
Zero-Hopf Bifurcation
66%
Zero-Hopf Equilibrium
33%
Mathematics
Birational Map
33%
Central Configurations
33%
Connected Manifold
8%
Difference Equation
33%
Differential System
94%
Discrete Dynamical System
11%
Eigenvalue
11%
Equilibrium Point
11%
Fibration
33%
Hopf Bifurcation
77%
Integral
33%
Isolated Equilibrium Point
11%
Limit Cycle
100%
Linear Algebra
33%
Lorenz System
33%
Manifold
33%
Mathematical Modeling
11%
Method of Least Square
33%
Open Problem
8%
Orbit
75%
Parameter Family
11%
Periodic Solution
8%
Polynomial
44%
Regular Polyhedron
33%
Reversibility
11%
Singular Point
33%
Straight Line
11%
Total Number
11%
Vector Field
44%